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Classification of the Similarity Solutions of 
Free Kramers Equation 
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We obtain a complete classification of all possible nontrivial similarity solutions 
of the free Kramers equation, together with a necessary and sufficient condition 
for each type to be reducible to the heat equation. A confluent hypergeometric 
solution of the free Kramers equation is derived for some classes of similarity 
solutions. 

KEY WORDS: Brownian motion; free Kramers type; group classification; 
heat and confluent hypergeometric solution. 

1. I N T R O D U C T I O N  

The unidimensional  Brownian mot ion  of a gas can be described reasonably 
well by the Fokker -P lanck  equat ion of free Kramers type 

ou +( O U ( x , y , t ) + y  ( x , y , t ) - - r  u ( x , y , t ) = O  (1) 
at  ~ Y+  M OyJ 

x ~ R ,  y eR.  Here KB is the Boltzmann constant  and r is the friction 
coefficient, depending on the size and mass M of the particles; T is 
temperature.~l 

As the distr ibution function, u must be a nonnegative function of 
its physical coordinates x, y, t and parameters K B T / M = R  and r, i.e., 
u(x, y, t; r, R)~>0; for simplicity we choose the units so that r = R =  1. 
The arbitrariness of the parameters r and R does not  alter the analytic 
equations;  we return to this point  in the concluding discussion. 
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The most extended Lie group of tranformations admitted by Eq. (1) 
depends on six arbitrary group constants/2~ It gives rise to the trivial 
symmetries generated by 

O 0 0 0 
B, =-~, Bz=o---s B3=U~u, Bg= g(x, y, t) ~3---~ 

Here g is an arbitrary solution of Eq. (1). The symmetry Bg is characteristic 
for the linear nature of Eq. (1) and demonstrates the superposition principle 
of linear equations. The only three nontrivial symmetry generators are given 
by 

B4 = tO... + 0 , , -  �89 + y) uO. 

B5 = (Ox + O,,- yuO,)e' (2) 

B6 = (0.,.- 0,,) e - '  

In the present work, we propose a natural classification of the possible 
similarity solutions admitted by the free Kramers equation (1). 

Precisely, by introducing the adjoint representation of the Lie 
algebra/3J we obtain the basic fields of an optimal system, from which 
every other solution can be derived, given 11 combinations of symmetries. 
This produces the essential types of the reduced Kramers equation, which 
are partial differential equations of the similarity variables S and Z, as 
well as similarity solutions F(S, Z) found by a systematic use of the Lie 
similarity methodJ 3 5) One finds the 11 essential subgroups listed in 
Table I. One obtains further solutions of Eq. (1) by applying finite group 
transformations to these essential solutions. 13) 

In the following, we look for transformations which will map the 
reduced Kramers equations in Table I to some type that is known to have 
a fundamental solution, from which the analytical solution of the free 
Kramers equation may be constructed. We obtain the two following cases. 

2. C O N N E C T I O N  TO T H E  H E A T  E Q U A T I O N  

To see how this relation appears in the reduced Kramers equations in 
Table 1, except those that correspond to the subclasses B, +B2 and 
B, + B4, one can write them in the form 

Fs = a(S, Z) Fzz + b(S, Z) Fz + d(S, Z)F (3) 

Here and in the following subscripts means differentiation. 
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If we let S = V and W= R(S, Z), where 

Z 

R(S, Z) = Io (a(s, n))-,/2 dn 

then Eq. (3) becomes 

Fv= Fww+ D( V, W)Fw + d( V, W)F 

where 

D(V, W)= - R s  + a(S, Z) Rzz  + b(S, Z ) R z  

Now let C( V, W) and G( V, W) be such that 

G = e-CF 

and 

Cw = - �89 V, W) 

We find that Eq. (5) is equivalent to 

G v = G w w +  K(V, W)G 

where 

K(V, W)= -Cv+Cw~-C~+d(V,  W) 

Bluman 16~ proved that if K(V, W) is of the form 

K( V, W) = qo( V) + q~( V) W + qz( V) W 2 

Saied 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

where qo, q,, and q2 are arbitrary functions of V, we can transform Eq. (8) 
to the heat equation constructively, by a one-to-one mapping. 

Fortunately, making use of transformations (4), (6) and (7) the 
reduced Kramers equations in Table I (except those that corresponds to 
B~ + B2 and B, + B4) will transform to equations of the form (8) with 
K(V, W) satisfying the condition in (10). 

3. C O N F L U E N T  H Y P E R G E O M E T R I C  S O L U T I O N  

Looking for exact solutions of the PDE corresponding to the sub- 
classes B~ + B_, and B~ + B4, we tried the Lie group method, which leads 
to the variable separable form of solution. For the first one, substitute 
F(S, Z) = e s-  zL(Z). The corresponding PDE transforms to the ODE 

d2L/dz 2 + (z- -2)  d z + L = O  (11) 
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Using the transformation h = - ( z - 2 ) 2 / 2 ,  one obtains 

h d2L/dh 2+ 1 (~ - h) dL/dh - �89 = 0 (12) 

which is a confluent hypergeometric equation. It has the solution 

L(h)  = ,F,(�89 �89 h) (13) 

Similarly, for the second subclass Bt + B4, let F(s, z)= eS-:/4N(z); then the 
corresponding PDE transform to 

d2N/dz  2 + (z - 1 ) dN/dz  - �89 = 0 (14) 

which may be written as 

d 2 L / d z 2 + ( x / ~ z - 1 / x / ~ ) d L / d z + ( x / ~ / 2 - 3 / 2 ) L = O  (15) 

where 

and K satisfies 4 K  2 + 2k --  1/2 = 0. 
confluent hypergeometric equation 

L ( z )  = e x p ( K z  2 - 3 k z / x / ~  ) N ( z )  

Equation (15) 

where 

can be written as a 

h d2L/dh 2 + (1/2 - h) dL/dh - (9/2 - 2 x /~)L = 0 (16) 

/,= - / , A z -  

4. CONCLUDING DISCUSSION 

We conclude by discussing two specific comments: 

1. It is important to emphasize that the occurrence of the physical 
parameters R and r in the symmetry generators does not alter the analytic 
form of the reduced Kramers equations in Table I. 

In general, the explicit dependence of the symmetry generators on 
parameters R and r corresponding to Eq. (2) is 

B 4 = fO x + O.v - -  ( 1 / 2 R ) ( y  + rx )  uO,, 

B 5 = e"[(1/r)0x + O:,-- (1 /R)  yuO.]  (17) 

B 6 = er '[ (1/r)Ox - c?,,] 

The vectors B~, Bz,  and B 3 will not change. 
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2. For the free Kramers equation (1), where we seek a similarity 
solution of the distribution function u for which 

u(x, y, t; r, R)>~O (18) 

two remarks are in order. First, it should be emphasized that the distribu- 
tion function u is connected with the similarity solution F(s, z) of the 
reduced equation by relation of the form u = ehF. Second, these reduced 
Kramers equations transform to the heat equation or the confluent hyper- 
geometric equation, where the nonnegative solutions are satisfied. 

To incorporate these comments, let us consider the following 
illustrative examples. 

(i) The group-invariant B5 suggests the similarity variables s and 
z and similarity solution F(s ,z )  to be s = t ,  z = r x - y ,  and u =  
e x p ( - y 2 / 2 R ) F .  Substitution of the similarity into Eq. (1) results in 
Fs = rRF~z, which has the fundamental solution 

F(s, z) = ( 4rRT~s) - 1/2 exp ( - z 2/4r Rs ) (19) 

If we invert all our previously used transformations, the distribution 
function is 

u(x, y, t; r, R) = (4rR~t) -  i/2 exp[ - y 2 / 2 R  - (rx - y)2/4rRt] (20) 

(ii) The similarity representations corresponding to the vector field 
0 6 a re  s = t ,  z = r x + y ,  and u = F ( s , z ) .  The reduced equation (1) reads 
F~. = rRF~. + rF, which can be transformed to the heat equation Gs = rRGz~ 
by the transformation F =  e~SG. Then, Eq. (1) has the solution 

u(x, y, t; r, R)  = (4rR~t)-1/2 e x p [ r t -  (rx + y)2/4rRt] (21) 

(iii) For the class of similarity solutions generated by the vector field 
B4, the general reduction can be obtained by the similarity representation 
s = t ,  z = x - y t ,  and u = e x p ( - h ) F ,  where h = [ ( l + r s ) y 2 + 2 r z y ] / 4 R .  
This solution inserted in Eq. (1) gives 

F~. = rRs2F..~ + r2szFz + [2rR(rs + 1 ) + r3z2]/4RF (22) 

Making use of transformations (4), (6), and (7), we get 

G v = G  ...... + K(v, w)G (23) 

where 

s = v, w = (rR)-1/2 z/s, G(v, w) = exp[w2(1 + r2v2)/4v] F(v, w) 
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and 

K(v, w)=qo(v)+qdv)w2= ( r v -  1)/2v- I-(r2v2 + 2)/4v2] w2 (24) 

Equations of the form (23) can be transformed to the heat equation 

(7o = C,-~w (25) 

by a one-to-one mapping (for details see ref. 4, Chapter 6, where a specific 
algorithm to determine this mapping is established), 

~=  V(v), ~ =  W ( v ,  w ) = w ( V ' )  1 /2 ,  G = e x p ( w 2 V " / 8 V ' ) R ( o )  (26) 

where 

R ( v )  = exp - m ( s ) / n ( s )  ds , m = - n ' / 4  - qon, n = 2 V / V '  

and V is determined by the relation 

2M'  = M 2 + 16q2 (27) 

where 

M =  V " / V '  

In a similar fashion, the other reduced Kramers equations can be trans- 
formed to the heat equation and this ensures that the solutions are non- 
negative. 

(iv) As an example of the other class of the reduced Kramers equa- 
tions, which transform to the confluent hypergeometric equation, consider 
the subclass BI + B2, where the solution of Eq. (12) is 

L ( h ) =  jF~(1/2, 1/2, h ) = e  h and 2h=  - ( z - 2 )  2 

One obtains 

u ( x ,  y, t) = exp(t - x - 2 + y - y 2 / 2 )  (28) 

As a final comment we conclude that the great variety of solutions to 
Eq. (1) obtained in Table I allows a group classification and presents a 
new class of solutions which are not equivalent to the heat equation. 
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